木叶下

  • 编程算法
  • 深度学习
  • 微小工作
  • 善用软件
  • 杂记
  • 诗人远方
南国羽说
文字记录生活
  1. 首页
  2. 未分类
  3. 正文

The sifting property of the Dirac distribution

2020年1月20日 2921点热度 17人点赞 0条评论

The ideal impulse in the image plane is defined using the Dirac distribution \(\delta(x,y)\)

\int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{\delta(x,y)\text{d}x\text{d}y=1} }

for \ all \ x,y\neq0, \delta(x,y)=0

It provides the value of the function \( f(x, y) \) at the point\( (\lambda, \mu) \).

\int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)\delta(x-\lambda,y-\mu)\text{d}x\text{d}y=f(\lambda,\mu)} }

标签: 暂无
最后更新:2020年1月20日

Dong Wang

I will work as a PhD student of TU Graz in Austria. My research interests include Embedded/Edge AI, federated learning, computer vision, and IoT.

点赞
< 上一篇

文章评论

razz evil exclaim smile redface biggrin eek confused idea lol mad twisted rolleyes wink cool arrow neutral cry mrgreen drooling persevering
取消回复

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据。

COPYRIGHT © 2013-2023 nanguoyu.com. ALL RIGHTS RESERVED.

Theme Kratos Made By Seaton Jiang

陕ICP备14007751-1号